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To build new supramolecular architectures,1 it is necessary to
identify versatile supramolecular synthons and to utilize such
connectors in the assembly of organic molecular solids and metal-
containing networks.2 So far, predictable assembly of metal
complexes has primarily been achieved through syntheses of
coordination polymers, and several 2-D and 3-D metal-containing
frameworks based on ligands such as 4,4′-bipyridine and pyrazine
have resulted in porous solids with channels and cavities,
(although interpenetration of identical networks is commonly
observed).3-5 Incorporation of metal ions within ordered hydrogen-
bonded networks has received far less attention, although some
intermolecular connectors have been utilized for linking metal
complexes into a variety of hydrogen-bonded architectures.6,7

The oxime moiety (-C(R)dNOH) represents a supramolecular
connector that can generate infinite low-dimensional networks
through complementary hydrogen bonds involving a dimeric
R2

2(6) motif.8,9 If the oxime functionality is combined with a

coordination site for a metal ion, we have access to a bridge
between coordination complexes and supramolecular assembly.
To this end, we have explored various pyridine-oxime ligands
in the design of silver(I)-containing hydrogen-bonded networks
where the geometry encoded in the coordination complex is
propagated into low-dimensional architectures via intermolecular
oxime-oxime hydrogen bonds.10,11

The crystal structure of bis(3-aldoximepyridine)silver(I) hexaflu-
orophosphate (1)12 contains cations comprised of two 3-aldoxime-
pyridine ligands coordinated through the pyridine nitrogen atoms
to a silver(I) ion, [Npy-Ag-Npy 171.7(1)°]. The oxime moieties
are cis with respect to each other, and cations are linked by
complementary O-H‚‚‚N hydrogen bonds between oxime moi-
eties on neighboring ligands, generating infinite 1-D chains.
Adjacent chains are linked by two C-H‚‚‚O hydrogen bonds,
resulting in 2-D cationic sheets, Figure 1. The [PF6]- counterions
occupy the resulting “holes” within the cationic sheet, and are
held in position by several C-H‚‚‚F hydrogen bonds. The result
is the anisotropic, lamellar structure shown in Figure 2.

The crystal structure of bis(3-aldoximepyridine)silver(I) per-
chlorate (2)13 is very similar to that of1, even though the size of
the anion has changed significantly from1 to 2 (molecular
volumes of 72 and 55 Å3, respectively14). The oxime-oxime
hydrogen bonds still persist, and there are no notable changes in
the way in which neighboring silver(I) complexes are held
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(8) A search of the Cambridge Structural Database for simple aromatic
aldoximes have identified three oxime-oxime intermolecular interactions
resulting in dimericR2

2(6) motifs, infinite chainsC1
1(3), and one example of a

tetrameric assembly generated by theC1
1(3) motif. Due to the lack of struc-

tural data, it is currently not possible to make statistically significant statements
about the relative occurrence of these motifs in organic molecular solids.
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(10)Experimental details:An ethanolic solution of the pyridine-oxime
ligand was slowly added to an aqueous solution of the silver(I) salt. The flask
was covered with aluminum foil and left to stand in ambient air. After 2-4
days, colorless crystals were formed. The ratios of ligand to silver salt in the
reactions were 4:1 for1 (mp 181-183.5°C), 1:1 for 2 (mp 181-183 °C),
2:1 for 3 (mp 180-184 °C), and 2:1 for4 (mp 180-183.5°C).

(11)X-ray crystallography:Crystal data were collected using a Siemens
P4 four-circle diffractometer with graphite monochromated Mo KR radiation
(λ ) 0.710 73 Å). Crystal stabilities were monitored by measuring 3 standard
reflections after every 97 reflections, with no significant decay observed. Cell
parameters were obtained from 35 accurately centered reflections in the 2θ
range 10-28°. Data were collected using aθ-2θ scanning technique, and
Lorentz and polarization corrections were applied. The structures were solved
by heavy atom methods, with non-hydrogen atoms found by successive full
matrix least squares refinement onF2 and refined with anisotropic thermal
parameters. Hydrogen atom positions were located from difference Fourier
maps, and a riding model with fixed thermal parameters [uij ) 1.2Uij(eq) for
the atom to which they are bonded] was used for subsequent refinements.
The weighting function applied wasw-1 ) [σ2(Fo

2) + (g1P)2 + (g2P)] where
P ) [Fo

2 + 2Fc
2]/3. The SHELXTL PC and SHELXL-93 packages were used

for data reduction and structure solution and refinement{Sheldrick, G. M.
SHELXL-93, University of Go¨ttingen}.

(12)Crystal data for1: C12H12AgF6N4O2P,Mr ) 497.10 g mol-1, colorless,
irregular prism (0.42× 0.28× 0.16 mm), monoclinic, space groupC2/c, a
) 15.403(2) Å,b ) 8.3865(8) Å,c ) 13.265(1) Å,â ) 111.300(8)°, U )
1596.5(3) Å3, Z ) 4, Fcalcd ) 2.068 g cm-1, µ(Mo KR) ) 1.455 mm-1; of
1305 reflections collected, 1255 were independent;T ) 173 K; FinalR value
0.0211, wR) 0.0508, for 1182 data withI > 2σ(I) and 119 parameters; largest
difference peak and hole 0.330 and-0.544 e Å-3.

Figure 1. Hydrogen-bonded cationic sheet in1.
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together. The hydrogen bonds that generate the cationic sheets
are robust, but not too rigid, and can therefore “flex” to
accommodate a smaller anion within the holes while maintaining
an efficient packing.

The crystal structure of bis(3-acetyloximepyridine)silver(I)
hexafluorophosphate (3)15 contains cations comprised of two
3-acetyloximepyridine ligands coordinated through the pyridine
nitrogen atoms to a silver(I) ion, [Npy-Ag-Npy 170.3(1)°]. The
oxime moieties are arranged trans with respect to each other and
neighboring cations are linked by oxime-oxime O-H‚‚‚N
hydrogen bonds,R2

2(6), into 1-D chains. The chains are ar-
ranged within well-defined 2-D regions, connected by intermo-
lecular hydrogen bonds. The anions, positionedbetweenlayers,
act as “bridges”, via C-H‚‚‚F hydrogen bonds, Figure 3. There
are no short aryl‚‚‚aryl contacts or hydrogen bonds between
cationic layers.

The crystal structure of bis(3-acetyloximepyridine)silver(I)
perchlorate (4)16 contains cations where the pyridine nitrogen
atoms are coordinated to a silver(I) ion [Npy-Ag-Npy 165.6-
(1)°] and with a trans arrangement of oxime groups. The silver
complexes are again connected through O-H‚‚‚N intermolecular
R2

2(6) hydrogen bonds, resulting in 1-D chains. These chains

are propagated into 2-D sheets via C-H‚‚‚O hydrogen bonds,
Figure 4. The [ClO4]- counterions are positioned between the
cationic layers, and participate in several hydrogen bonds to the
layer above and below.

The assembly of 1-D chains into 2-D sheets is facilitated in
all four structures1-4 through a C-H‚‚‚O hydrogen bond to
the available oxime oxygen acceptor site. Although C(5)-H(5)
is not the most acidic site, it is sterically more accessible than
either C(2)-H(2) or C(4)-H(4). An interchain hydrogen bond
involving C(6)-H(6) would not allow the chains to pack together
as efficiently, and for these reasons, C(5)-H(5) becomes the most
likely donor moiety for an intermolecular hydrogen bond to the
oxime oxygen, thus linking 1-D chains into 2-D layers.

The persistence of the intermolecularR2
2(6) motif in the

presence of different counterions and ligand substituents in the
crystal structures of1-4 is testimony to the utility of the oxime
moiety as a versatile intermolecular connector which can allow
coordination complexes to be directed into ordered networks such
as chains (1-D motifs).17 This supramolecular synthon is
particularly appealing since the oxime moiety is electronically
and sterically “tunable”; the R group can be modified to include
a wide range of electron donors/acceptors or “inert” spacers, and
these functional groups are accessible through well-known
synthetic methods.18
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(13)Crystal data for2: C12H12AgClN4O6, Mr ) 451.58 g mol-1, colorless,
irregular prism (0.40× 0.38× 0.42 mm), monoclinic, space groupP2(1)/c,
a ) 15.333(2) Å,b ) 8.185(1) Å,c ) 13.165(2) Å,â ) 110.681(9)°, U )
1545.7(3) Å3, Z ) 4, Fcalcd ) 1.940 g cm-1, µ(Mo KR) ) 1.516 mm-1; of
2844 reflections collected, 2714 were independent;T ) 173 K; final R value
0.0449,wR) 0.1212, for 2402 data withI > 2σ(I) and 217 parameters; largest
difference peak and hole 1.636 and-1.351 e Å-3.

(14) Molecular volumes were calculated as Connolly surfaces with a probe
radius of 1.4 Å.

(15)Crystal data for3: C14H16AgF6N4O2P,Mr ) 525.15 g mol-1, colorless,
irregular prism (0.33× 0.32 × 0.30 mm), triclinic, space groupP1h, a )
8.0125(4) Å,b ) 8.6411(4) Å,c ) 13.5754(9) Å,R ) 74.133(4)°, â ) 86.497-
(4)°, γ ) 81.677(5)°, U ) 894.35(8) Å3, Z ) 2, Fcalcd ) 1.950 g cm-1, µ(Mo
KR) ) 1.296 mm-1; of 4318 reflections collected, 4032 were independent;T
) 173 K; final R value 0.0362,wR ) 0.0985, for 3721 data withI > 2σ(I)
and 253 parameters; largest difference peak and hole 1.240 and-0.933 e
Å-3.

(16)Crystal data for4: C14H16AgClN4O6, Mr ) 479.63 g mol-1, colorless,
irregular prism (0.16× 0.25 × 0.18 mm), triclinic, space groupP1h, a )
7.6377(6) Å,b ) 8.2315(8) Å,c ) 13.9875(9) Å,R ) 75.902(6)°, â ) 88.767-
(6)°, γ ) 82.683(8)°, U ) 845.9(1) Å3, Z ) 2, Fcalcd ) 1.883 g cm-1, µ(Mo
KR) ) 1.391 mm-1; of 2395 reflections collected, 2195 were independent;T
) 173 K; final R value 0.0229,wR ) 0.0554, for 1994 data withI > 2σ(I)
and 235 parameters; largest difference peak and hole 0.321 and-0.308 e
Å-3.

(17) We are currently examining how the position of the oxime functionality
affects the supramolecular assembly.
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Figure 2. Edge-on view of the lamellar structure of1, with [PF6]- anions
positioned within cationic sheets.

Figure 3. Edge-on view of the packing in3, with [PF6]- anions
positioned between cationic sheets.

Figure 4. Hydrogen-bonded cationic sheet in4.
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